23 research outputs found

    Local prey shortages drive foraging costs and breeding success in a declining seabird, the Atlantic puffin

    Get PDF
    1. As more and more species face anthropogenic threats, understanding the causes of population declines in vulnerable taxa is essential. However, long-term datasets, ideal to identify lasting or indirect effects on fitness measures such as those caused by environmental factors, are not always available. 2. Here we use a single year but multi-population approach on populations with contrasting demographic trends to identify possible drivers and mechanisms of seabird population changes in the north-east Atlantic, using the Atlantic puffin, a declining species, as a model system. 3. We combine miniature GPS trackers with camera traps and DNA metabarcoding techniques on four populations across the puffins’ main breeding range to provide the most comprehensive study of the species' foraging ecology to date. 4. We find that puffins use a dual foraging tactic combining short and long foraging trips in all four populations, but declining populations in southern Iceland and north-west Norway have much greater foraging ranges, which require more (costly) flight, as well as lower chick-provisioning frequencies, and a more diverse but likely less energy-dense diet, than stable populations in northern Iceland and Wales. 5. Together, our findings suggest that the poor productivity of declining puffin populations in the north-east Atlantic is driven by breeding adults being forced to forage far from the colony, presumably because of low prey availability near colonies, possibly amplified by intraspecific competition. Our results provide valuable information for the conservation of this and other important North-Atlantic species and highlight the potential of multi-population approaches to answer important questions about the ecological drivers of population trends. biologging, diet, DNA metabarcoding, dual foraging, foraging ecology, intraspecific competition, population decline, seabirdspublishedVersio

    Using habitat models for chinstrap penguins, Pygoscelis antarctica, to inform marine spatial management around the South Sandwich Islands during the penguin breeding season

    Get PDF
    If not carefully managed, harvesting of krill risks disturbing the ecological balance of many Antarctic and sub-Antarctic sites where krill-dependent predators feed. One of the least disturbed sites anywhere within the Southern Ocean and one where krill fishing has so far been virtually non-existent is the South Sandwich Islands volcanic archipelago. Some of the main krill predators breeding at the South Sandwich Islands are penguins, with five species breeding on the islands, the dominant species of which is the chinstrap penguin. In this paper we report on the results of ARGOS PTT deployments during the chinstrap penguin chick-rearing period, using the recorded foraging trips to develop habitat models. Foraging habitats used by chinstrap penguins during the chick-rearing period were best characterised by distance from the colony and sea surface temperature and, using these two covariates, we predicted foraging habitat use around all islands. We show that the provisions of the South Georgia and South Sandwich Islands Marine Protected Area ensure that chinstrap penguins, and other krill-dependent predators with similar foraging ranges, likely have robust protection during the summer. During the winter, when krill predators are likely to forage further offshore, seasonal sea ice provides a physical barrier to exclude the fishery, again ensuring the islands’ unique biodiversity receives strong protection. However, to the north of the marginal sea ice zone, competition between krill predators and the fishery could exist if the fishery were ever to explore new locations for resource extraction. We make a number of conclusions, including the need for winter tracking data to inform future management options

    Population structure and phylogeography of the Gentoo Penguin (Pygoscelis papua) across the Scotia Arc

    Get PDF
    Climate change, fisheries' pressure on penguin prey, and direct human disturbance of wildlife have all been implicated in causing large shifts in the abundance and distribution of penguins in the Southern Ocean. Without mark-recapture studies, understanding how colonies form and, by extension, how ranges shift is challenging. Genetic studies, particularly focused on newly established colonies, provide a snapshot of colonization and can reveal the extent to which shifts in abundance and occupancy result from changes in demographic rates (e.g., reproduction and survival) or migration among suitable patches of habitat. Here, we describe the population structure of a colonial seabird breeding across a large latitudinal range in the Southern Ocean. Using multilocus microsatellite genotype data from 510 Gentoo penguin (Pygoscelis papua) individuals from 14 colonies along the Scotia Arc and Antarctic Peninsula, together with mitochondrial DNA data, we find strong genetic differentiation between colonies north and south of the Polar Front, that coincides geographically with the taxonomic boundary separating the subspecies P. p. papua and P. p. ellsworthii. Using a discrete Bayesian phylogeographic approach, we show that southern Gentoos expanded from a possible glacial refuge in the center of their current range, colonizing regions to the north and south through rare, long-distance dispersal. Our findings show that this dispersal is important for new colony foundation and range expansion in a seabird species that ordinarily exhibits high levels of natal philopatry, though persistent oceanographic features serve as barriers to movement

    The challenges of detecting subtle population structure and its importance for the conservation of emperor penguins

    Get PDF
    Understanding the boundaries of breeding populations is of great importance for conservation efforts and estimates of extinction risk for threatened species. However, determining these boundaries can be difficult when population structure is subtle. Emperor penguins are highly reliant on sea ice, and some populations may be in jeopardy as climate change alters sea-ice extent and quality. An understanding of emperor penguin population structure is therefore urgently needed. Two previous studies have differed in their conclusions, particularly whether the Ross Sea, a major stronghold for the species, is isolated or not. We assessed emperor penguin population structure using 4,596 genome-wide single nucleotide polymorphisms (SNPs), characterized in 110 individuals (10–16 per colony) from eight colonies around Antarctica. In contrast to a previous conclusion that emperor penguins are panmictic around the entire continent, we find that emperor penguins comprise at least four metapopulations, and that the Ross Sea is clearly a distinct metapopulation. Using larger sample sizes and a thorough assessment of the limitations of different analytical methods, we have shown that population structure within emperor penguins does exist and argue that its recognition is vital for the effective conservation of the species. We discuss the many difficulties that molecular ecologists and managers face in the detection and interpretation of subtle population structure using large SNP data sets, and argue that subtle structure should be taken into account when determining management strategies for threatened species, until accurate estimates of demographic connectivity among populations can be made.</p

    Developing UAV monitoring of South Georgia and the South Sandwich Islands’ iconic land-based marine predators

    Get PDF
    Many remote islands present barriers to effective wildlife monitoring in terms of challenging terrain and frequency of visits. The sub-Antarctic islands of South Georgia and the South Sandwich Islands are home to globally significant populations of seabirds and marine mammals. South Georgia hosts the largest breeding populations of Antarctic fur seals, southern elephant seals and king penguins as well as significant populations of wandering, black-browed and grey-headed albatross. The island also holds important populations of macaroni and gentoo penguins. The South Sandwich Islands host the world’s largest colony of chinstrap penguins in addition to major populations of Adélie and macaroni penguins. A marine protected area was created around these islands in 2012 but monitoring populations of marine predators remains a challenge, particularly as these species breed over large areas in remote and often inaccessible locations. During the 2019/20 austral summer, we trialed the use of an unoccupied aerial vehicle (UAV; drone) to monitor populations of seals, penguins and albatross and here we report our initial findings, including considerations about the advantages and limitations of the methodology. Three extensive southern elephant seal breeding sites were surveyed with complete counts made around the peak pupping date, two of these sites were last surveyed 24 years ago. A total of nine islands, historically recorded as breeding sites for wandering albatross, were surveyed with 144 fledglings and 48 adults identified from the aerial imagery. The UAV was effective at surveying populations of penguins that nest on flat, open terrain, such as Adélie and chinstrap penguin colonies at the South Sandwich Islands, and an extensive king penguin colony on South Georgia, but proved ineffective for monitoring macaroni penguins nesting in tussock habitat on South Georgia as individuals were obscured or hidden by vegetation. Overall, we show that UAV surveys can allow regular and accurate monitoring of these important wildlife populations

    Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 3926, doi:10.1038/s41598-018-22313-w.Despite concerted international effort to track and interpret shifts in the abundance and distribution of Adélie penguins, large populations continue to be identified. Here we report on a major hotspot of Adélie penguin abundance identified in the Danger Islands off the northern tip of the Antarctic Peninsula (AP). We present the first complete census of Pygoscelis spp. penguins in the Danger Islands, estimated from a multi-modal survey consisting of direct ground counts and computer-automated counts of unmanned aerial vehicle (UAV) imagery. Our survey reveals that the Danger Islands host 751,527 pairs of Adélie penguins, more than the rest of AP region combined, and include the third and fourth largest Adélie penguin colonies in the world. Our results validate the use of Landsat medium-resolution satellite imagery for the detection of new or unknown penguin colonies and highlight the utility of combining satellite imagery with ground and UAV surveys. The Danger Islands appear to have avoided recent declines documented on the Western AP and, because they are large and likely to remain an important hotspot for avian abundance under projected climate change, deserve special consideration in the negotiation and design of Marine Protected Areas in the region.We gratefully acknowledge the financial support of the Dalio Foundation, Inc. through the Dalio Explore Fund, which provided all the financing for the Danger Island Expedition. We would like to thank additional support for analysis from the National Science Foundation (NSF PLR&GSS 1255058 - H.J.L. and P.M.; NSF PLR 1443585 – M.J.P.) and the National Aeronautical and Space Administration (NNX14AC32G; H.J.L. and M.S.). Geospatial support for the analysis of high resolution satellite imagery provided by the Polar Geospatial Center under NSF PLR awards 1043681 & 1559691

    Receding ice drove parallel expansions in Southern Ocean penguins

    Get PDF
    International audienceClimate shifts are key drivers of ecosystem change. Despite the critical importance of Antarctica and the Southern Ocean for global climate, the extent of climate-driven ecological change in this region remains controversial. In particular, the biological effects of changing sea ice conditions are poorly understood. We hypothesize that rapid postglacial reductions in sea ice drove biological shifts across multiple widespread Southern Ocean species. We test for demographic shifts driven by climate events over recent millennia by analyzing population genomic datasets spanning 3 penguin genera ( Eudyptes , Pygoscelis , and Aptenodytes ). Demographic analyses for multiple species (macaroni/royal, eastern rockhopper, Adélie, gentoo, king, and emperor) currently inhabiting southern coastlines affected by heavy sea ice conditions during the Last Glacial Maximum (LGM) yielded genetic signatures of near-simultaneous population expansions associated with postglacial warming. Populations of the ice-adapted emperor penguin are inferred to have expanded slightly earlier than those of species requiring ice-free terrain. These concerted high-latitude expansion events contrast with relatively stable or declining demographic histories inferred for 4 penguin species (northern rockhopper, western rockhopper, Fiordland crested, and Snares crested) that apparently persisted throughout the LGM in ice-free habitats. Limited genetic structure detected in all ice-affected species across the vast Southern Ocean may reflect both rapid postglacial colonization of subantarctic and Antarctic shores, in addition to recent genetic exchange among populations. Together, these analyses highlight dramatic, ecosystem-wide responses to past Southern Ocean climate change and suggest potential for further shifts as warming continues

    Microsatellite_genotypes_txt

    No full text
    This file contains the microsatellite genotypes for each individual penguin, set by colony, in a format that can be used directly in Arlequin (presented here in a .txt file). The 8 microsatellite loci are labelled at the top in a comment

    Python script for filtering .SAM formatted mapping files aligned with BWA mem

    No full text
    The filter.py script works on sorted .SAM formatted mapping files from BWA mem alignment. For every pair of mapped forward and reverse reads, it parses out the CIGAR field (column 6 of the SAM file) and the MD tag to calculate the number of insertions, deletions, and mismatches. If a pair of reads have mismatches less than or equal to five and insertion/deletions less than or equal to two, then the pair is kept and printed to linux standard output. SAM header lines are ignored by the parser but also printed to standard output for compatible down-stream analysis

    King penguin filtered SNP dataset

    No full text
    King penguin filtered SNP datase
    corecore